Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 353, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594632

ABSTRACT

Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.


Subject(s)
Aedes , Bacterial Infections , Mycoses , Animals , Humans , Drosophila melanogaster , Mosquito Vectors/genetics , Aedes/genetics , Aedes/microbiology , Bacteria , Fungi/genetics
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230063, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497256

ABSTRACT

Discussions of host-microbe interactions in mosquito vectors are frequently dominated by a focus on the human pathogens they transmit (e.g. Plasmodium parasites and arboviruses). Underlying the interactions between a vector and its transmissible pathogens, however, is the physiology of an insect living and interacting with a world of bacteria and fungi including commensals, mutualists and primary and opportunistic pathogens. Here we review what is known about the bacteria and fungi associated with mosquitoes, with an emphasis on the members of the Aedes genus. We explore the reciprocal effects of microbe on mosquito, and mosquito on microbe. We analyse the roles of bacterial and fungal symbionts in mosquito development, their effects on vector competence, and their potential uses as biocontrol agents and vectors for paratransgenesis. We explore the compartments of the mosquito gut, uncovering the regionalization of immune effectors and modulators, which create the zones of resistance and immune tolerance with which the mosquito host controls and corrals its microbial symbionts. We examine the anatomical patterning of basally expressed antimicrobial peptides. Finally, we review the relationships between inducible antimicrobial peptides and canonical immune signalling pathways, comparing and contrasting current knowledge on each pathway in mosquitoes to the model insect Drosophila melanogaster. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Subject(s)
Aedes , Microbiota , Animals , Humans , Drosophila melanogaster , Bacteria , Immunity, Innate , Antimicrobial Peptides
3.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546902

ABSTRACT

Mosquitoes are prolific vectors of human pathogens; a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster , is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae ( s.l. ) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti , however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.

4.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471187

ABSTRACT

Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a 'species signature' comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.


Subject(s)
Aedes , Anopheles , Aedes/genetics , Animals , Anopheles/genetics , Female , Ovary , Sugars , Transcriptome
6.
Proc Natl Acad Sci U S A ; 114(47): 12566-12571, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114059

ABSTRACT

A naturally occurring Wolbachia strain (wAnga-Mali) was identified in mosquitoes of the Anopheles gambiae complex collected in the Malian villages of Dangassa and Kenieroba. Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains from supergroup A and has the highest homology to a Wolbachia strain isolated from cat fleas (Ctenocephalides). wAnga-Mali is different from two Wolbachia strains previously reported in A. gambiae from Burkina Faso (wAnga_VK5_STP and wAnga_VK5_3.1a). Quantitative analysis of Wolbachia and Plasmodium sporozoite infection in field-collected mosquitoes indicates that the prevalence and intensity of Plasmodium falciparum sporozoite infection is significantly lower in Wolbachia-infected females. The presence of Wolbachia in females from a laboratory Anopheles coluzzii (A. gambiae, M form) colony experimentally infected with P. falciparum (NF54 strain) gametocyte cultures slightly enhanced oocyst infection. However, Wolbachia infection significantly reduced the prevalence and intensity of sporozoite infection, as observed in the field. This indicates that wAnga-Mali infection does not limit early stages of Plasmodium infection in the mosquito, but it has a strong deleterious effect on sporozoites and reduces malaria transmission.


Subject(s)
Anopheles/microbiology , Host-Parasite Interactions , Insect Vectors/microbiology , Malaria, Falciparum/transmission , Plasmodium falciparum/microbiology , Wolbachia/genetics , Animals , Anopheles/parasitology , Female , Host-Pathogen Interactions , Insect Vectors/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Mali/epidemiology , Oocysts/pathogenicity , Oocysts/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Severity of Illness Index , Sporozoites/pathogenicity , Sporozoites/physiology , Wolbachia/classification , Wolbachia/isolation & purification
7.
Glob Public Health ; 8(3): 342-56, 2013.
Article in English | MEDLINE | ID: mdl-23394618

ABSTRACT

Reproductive health (RH) has historically received low priority in the hierarchy of humanitarian response. Awareness of RH needs in emergencies began in the mid-1990s and led to the formation of the Inter-Agency Working Group (IAWG) for RH. Subsequently, the Minimum Initial Service Package (MISP), a set of guidelines for RH service delivery in crisis settings, was created. The objectives of the MISP are to facilitate the coordination of RH services, prevent and manage the consequences of sexual violence, reduce HIV transmission, minimize maternal and neonatal morbidity and mortality, and plan for comprehensive RH services in the post-crisis phase. Available documentation on MISP implementation is minimal, and reveals mixed success. Challenges include low MISP awareness, inadequate RH training among humanitarian actors, logistical difficulties and poor coordination. Continued emphasis on advocacy and capacity building, a stronger focus on logistics and coordination and a greater commitment to monitoring and evaluation are essential for improving the MISP's effectiveness in the field.


Subject(s)
Reproductive Health Services/organization & administration , Developing Countries , Efficiency, Organizational , Emergencies , Female , HIV Infections/prevention & control , Humans , Infant Mortality , Infant, Newborn , Pregnancy , Pregnancy Complications/prevention & control , Sex Offenses/prevention & control , Warfare
SELECTION OF CITATIONS
SEARCH DETAIL
...